

TECHNICAL CATALOGUE

FULL FLOW BALL VALVES: PARIS

081 Paris ball valve, full flow

Suitable for domestic water services, heating and air-conditioning plants, compressed air systems. PARIS

SIZE	PRESSURE	CODE	PACKING
1/2" (DN 15)	50bar/725psi	081B012	12/72
3/4" (DN 20)	40bar/580psi	081B034	8/48
1" (DN 25)	40bar/580psi	081B100	6/36
1"1/4 (DN 32)	30bar/435psi	081B114	4/20
1"1/2 (DN 40)	30bar/435psi	081B112	2/10
2" (DN 50)	25bar/362.5psi	081B200	2/6
2"1/2 (DN 65)	18bar/261psi	1210212	1/5
3" (DN 80)	16bar/232psi	1210300	1/3
4" (DN 100)	14bar/203psi	1210400	1/2

CERTIFICATIONS

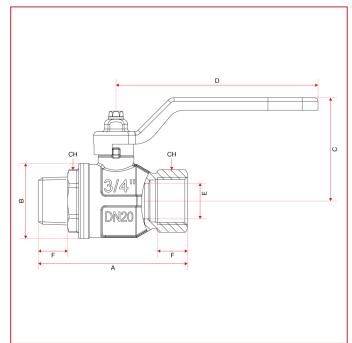
TECHNICAL SPECIFICATIONS

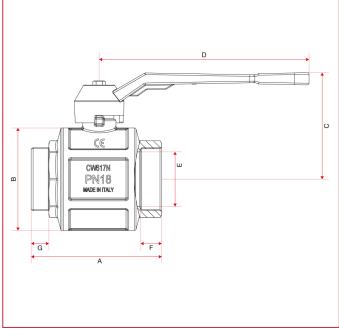
Male/female threads.

Lever handle in steel (aluminium in the sizes 2"1/2, 3" and 4").

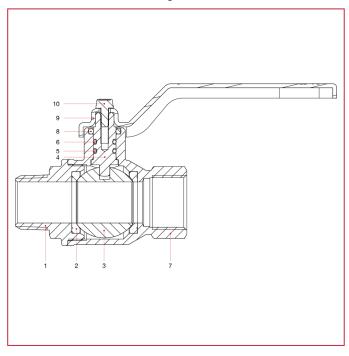
Body in nickel-plated brass.

Minimum and maximum working temperatures: -20°C, 150°C in absence of steam.


Female threads:

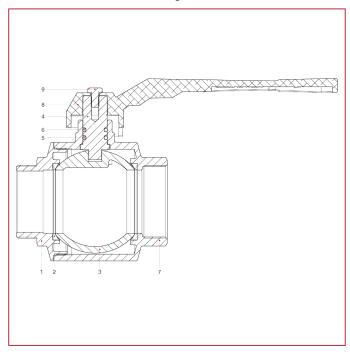

- ISO 7/1 Rp parallel (equivalent to DIN EN 10226-1 and BS EN 10226-1) sizes 1/2" through 2".
- ISO228 (equivalent to DIN EN ISO 228 and BS EN ISO 228) sizes 2"1/2, 3" and 4" Male threads:
- ISO 7/1 R taper (equivalent to DIN EN 10226-1 and BS EN 10226-1) sizes 1/2" through 2".
- ISO228 (equivalent to DIN EN ISO 228 and BS EN ISO 228) sizes 2"1/2, 3" and 4"

OVERALL DIMENSIONS



	1/2"	3/4"	1"	1"1/4	1"1/2	2"	2"1/2	3"	4"
DN	15	20	25	32	40	50	65	80	100
Α	76,5	83,5	93	110	121	140,5	155,5	178	208
В	32,5	42	49,5	59,5	72	86	122	142	180
С	49	58	61	75	91	98	126,75	135,75	153,75
D	88,5	113	113	138	157,8	157,8	250	250	250
E	15	20	25	32	38	49	63	74	97
F	15	16,3	19,1	21,4	21,4	25,7	25	27,5	30
G	15	16,5	19	21,5	21,5	26	21	24	23
CH	25	31	40	49	54	68,5			
Kg/cm2 bar	50	40	40	30	30	25	18	16	14
LBS - psi	725	580	580	435	435	362,5	261	232	203

MATERIALS sizes 1/2" through 2"



POS.	DESCRIPTION	N.	MATERIAL
1	Male end adapter	1	Nickel-plated brass CW617N
2	Seat	2	P.T.F.E.
3	Ball	1	Chrome-plated brass CW617N
4	Stem	1	Brass CW614N
5	O-ring	1	NBR
6	O-ring	1	Viton®
7	Body	1	Nickel-plated brass CW617N
8	O-ring	1	NBR
9	Lever handle	1	Varnished steel P04
10	Screw	1	Zinc-plated steel C4C

MATERIALS sizes 2"1/2 through 4"

POS.	DESCRIPTION	N.	MATERIAL
1	Male end adapter	1	Nickel-plated brass CW617N
2	Seat	2	P.T.F.E.
3	Ball	1	Chrome-plated brass CW617N
4	Stem	1	Brass CW614N
5	O-ring	1	NBR
6	O-ring	1	Viton®
7	Body	1	Nickel-plated brass CW617N
8	Lever	1	Aluminium
9	Screw	1	Zinc-plated CB4 FF (C34)

INSTALLATION

The itap S.p.A.'s valves are bi-directional, that means they manage the flow in both the directions.

The valves are composed by a ball, two seal in PTFE material, one stem, two sailing rings (O-Rings), one handle and a couple of parts made of brass (body and end adopter) that contain them and that are assembled by means of threat and a sealed material to obtain their aim.

In order to avoid that the sealed material gets broken and then the valve looses the connection between the body and the end-adapter, it's necessary to avoid to submit the two parts under the influence of a torque.

For the installation normal hydraulic practices must be used, and especially:

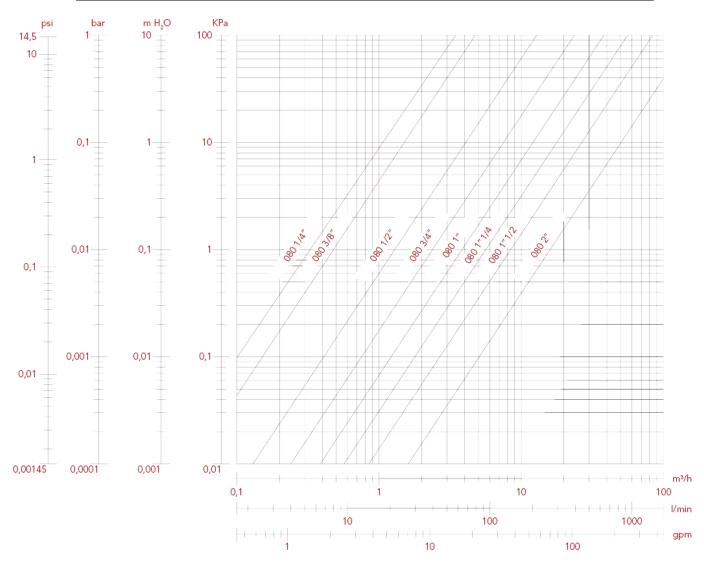
- ones have to be sure that the two pipes are correctly aligned;
- during the assembling process the installer has to apply its assembling tools at the end that is nearest to the pipe;
- the application of the sealing materials by the fitter (PTFE or hempen cloth) must be limited at the threat zone. An excess should interferes in the ball-gasket's closure zone, compromising the tightness.
- in the case that the fluid transported presents some impurities (dust, water too hard, etc.) ones have to remove these impurities by the means of a filter. Otherwise they could damage the seals.

DISASSEMBLY

To remove the valve from the pipe line or anyhow before to unscrew the junctions linked to it:

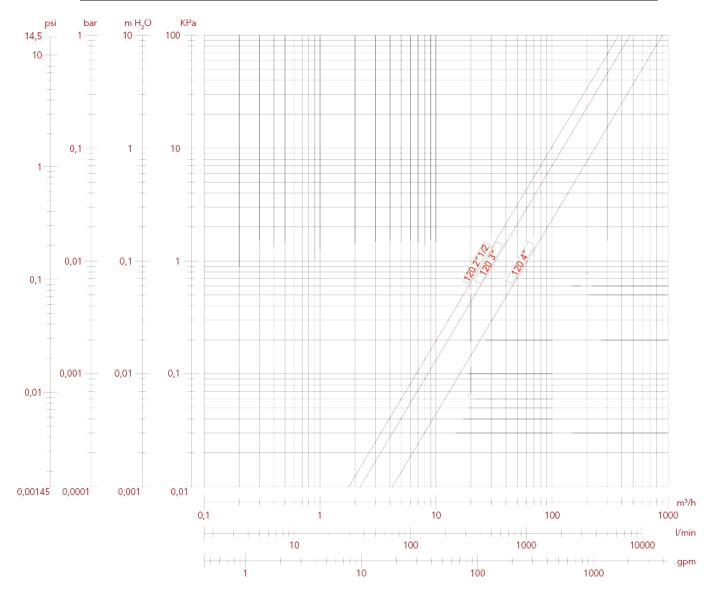
- wear the clothing protective normally required to work with the fluid transported within the line;
- depressurizze the line and operate in this way:
- positioning the valve in opened position and than empty the line;
- handle the valve to put down the residue pressure contained inside the space between the ball and the body before of remove it from the line;
- during the disassembly apply the screw tool at the end of the valve nearest the pipe;

MAINTENANCE


Verify the valve periodically, according to its application's field and its works' field and its work's conditions, in order to be sure that the valve works correctly.

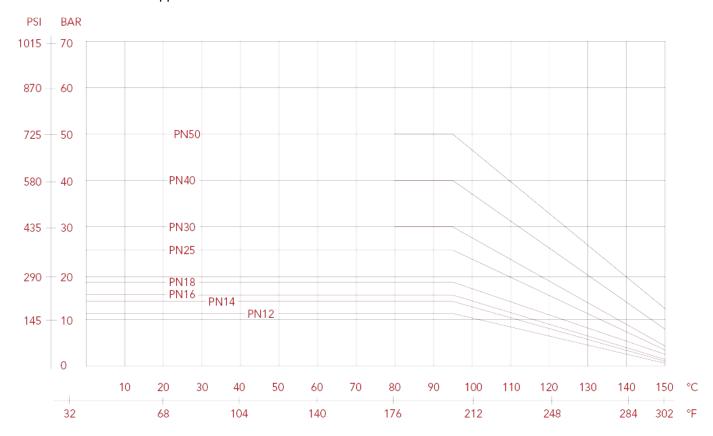
LOSS DIAGRAM (With water) size 1/2" through 2"

	1/2"	3/4"	1"	1"1/4	1"1/2	2"	2"1/2	3"	4"
KV	12,98	23,92	38,57	56,81	85	159	376	472	892



LOSS DIAGRAM (With water) size 2"1/2 through 4"

	1/2"	3/4"	1"	1"1/4	1"1/2	2"	2"1/2	3"	4"
KV	12,98	23,92	38,57	56,81	85	159	376	472	892



PRESSURE-TEMPERATURE DIAGRAM

The values shown by the dropping lines state the maximum limit of employment of the valves. The shown values are approximate.

